If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+-2x+9=0
We add all the numbers together, and all the variables
4x^2-2x=0
a = 4; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·4·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*4}=\frac{4}{8} =1/2 $
| a+28=90 | | (6x+14)+(6x+14)=76 | | x+40+5x-200=180 | | 1/4(0.8x-4/5)-0.7x=1.7 | | A4-12=6a-30 | | 8d+6=8d+6 | | 8d+96=180 | | 6v^2-8=0 | | 8d+6+90=180 | | 124=192-v | | 28/2x=-3 | | -12=8(w-6)-2w | | 2d+2=15 | | 34=4+5v | | 03.x=62 | | 7.3x=3 | | F(-24)=6x | | 12=-3d+3 | | 4y-8=2y+16 | | -1-(x-2)=1-x | | 10x+30+4x=38 | | (2x+30)+(4x-50)=180 | | Y^2+24y=11 | | (3x+19)+(2x+20)+8x+12)=180 | | 6(2x+7)=6(2x+1) | | 8(2x+5)=6x+40 | | 3(x-3)+12=2x+15-x | | -0.5(4x-8)-5=-17 | | w-7.9=4.33 | | u+5.6=7.52 | | T=12.2h+7.15 | | 25=5+4v |